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The fractal scaling properties of the heartbeat time series are studied in different controlled ergometric
regimes using both the improved Hurst rescaled rangesR/Sd analysis and the detrended fluctuation analysis
(DFA). The long-time “memory effect” quantified by the value of the Hurst exponentH.0.5 is found to
increase during progressive physical activity in healthy subjects, in contrast to those having stable angina
pectoris, where it decreases. The results are also supported by the detrended fluctuation analysis. We argue that
this finding may be used as a useful new diagnostic parameter for short heartbeat time series.
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The normal human heart interbeat[(RR) interval] time
series, is extremely inhomogeneous and nonstationary. It
fluctuates around the mean value in an irregular and complex
manner, even under resting conditions[1]. The presence of
scaling properties suggests that fractal analysis may provide
a method to recognize diseased states of the heart by study-
ing changes in the scaling properties. It has been observed
that scaling is degraded in some diseased states[2–4]. Also,
the significant scaling differences were found between rest
and exercise for healthy individuals[5]. The heart-rate vari-
ability (HRV) under controlled physical activity has been
partially studied in[6–8]. Some recent studies connected
with exercise[5,9] used only healthy subjects in their mea-
surement, and under specific conditions.

In this paper we examine the scaling properties of the
heartbeat time series in different controlled ergometric re-
gimes, for healthy individuals as well as for those having
stable angina pectoris(SAP). We use ambulatory RR data
gathered from stress test, as a possibility to distinguish
healthy individuals from individuals with SAP[10]. The
long-time Holter data, obtained while the subject is leading a
normal everyday life, are not suitable for our analysis since
the strength of the physical activity is unknown. The usual
diagnosis of SAP through stress tests is based on the shape
distortion of the ST wave. We believe that our approach
could improve current methods of SAP diagnosis.

Fluctuations in RR intervals during one of our ergometric
measurements are shown in Fig. 1. Both time series look
very similar and we cannot say which is from a healthy and
which is from a SAP individual. Spikes seen in the figure are
ectopic heartbeats orextrasystole(ES). These spikes are not
a sign of SAP, for even a healthy subject can have numerous
ES in their RR records.

The time series of RR intervals in our controlled ergomet-
ric measurement had a time duration of about 15 min
s.2000 beatsd. This type of measurement is used as a rou-
tine in the everyday clinical diagnostic procedure because
some heart diseases, such as SAP, usually become transpar-
ent under physical activities. Each measurement is designed
to consists of a resting period(pretrigger Pt), a few stages
(P1–P4) of running on an inclined belt, and a period of re-
laxation sRed. Regimes of physical activity are defined ac-
cording to the standard Bruce protocol[11] (Table I), with a

time duration of 3 min for each program. The pretrigger part
has a variable duration and is limited for analysis to the first
30 sec in each measurement. The relaxation period is re-
stricted to 6 min.

In the present paper only regimes P1 and P2 are analyzed.
Except in a few singular cases(Fig. 1; bottom), our SAP
patients were not able to complete regimes higher than P2,
and the measurements for them were stopped for medical
reasons.

The ECG ergometric data were digitized at a sampling
time of 1 ms by the WaveBook 512(Iotech. Cal. USA), and
transferred to a computer for further analysis. All question-
able portions of RR intervals were excluded manually, and
only segments with.90% sinus beats were included in the
final analyses.

RR records with numerous ES(more than 11% of the
whole beat number) were totally excluded from consider-
ation. Some ES, if existing in regimes with longer duration
(exercise programs and relaxation periods), were not ex-
cluded. However, in short-time rest-condition measurements
(Pt periods), because of small beat number and their high
influence on the result, all ES were excluded. We believe that
ES should be kept, in general, during the analysis since they
also contain information about the dynamical state of the
heart[12].

In order to estimate the Hurst exponent in series of RR
intervals during controlled physical activity, we apply the
rescaled rangesR/Sd method[13,14]. We are interested in
the capability of the R/S method to distinguish the patients
with SAP from the healthy subjects.

The nonstationarity in the RR time series, caused by
physical activity, is removed by a third-order polynomial re-
gression, separately for each regime of measurement. We
have found that this simple polynomial regression succes-
fully removes the influence of exercise on the RR data pro-
file, and even removes some of the unusual drifts sometimes
found in RR recording at rest. The improved R/S analysis is
then performed on the data representing deviations of RR
intervals from a trendline[Figs. 2(b) and 2(c)].

Denoting by husndj the deviation of RR data from the
trendline, we calculate the running meansūsnd for a givenn
and the accumulated deviations from the meanXsl ,nd , l
=1, . . . ,n using
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ūsnd =
1

n
o
k=1

n

uskd,

Xsl,nd = o
k=1

l

fuskd − ūsndg.

The rangeRsnd is defined as a distance between the mini-
mum and the maximum value ofX:

Rsnd = maxlXsl,nd − minlXsl,nd.

The rescaled rangesR/Sd is obtained by dividingRsnd with
the standard deviationSsnd:

Ssnd =Î1

n
o
k=1

n

fuskd − ūsndg2.

R/S is expected to show a power-law dependence on the box
sizen:

Rsnd/Ssnd , nH,

whereH is the Hurst exponent. The relationship between the
fractal dimensionD andH is [14]

D = 2 −H.

The time series can be divided into three distinct catego-
ries: H,0.5, H=0.5, andH.0.5. The caseH=0.5 corre-
sponds to random or uncorrelated data. IfH.0.5, the data
are persistent and characterized by long-time correlations or
“memory” effects on all time scales. The strength of the per-
sistence increases asH approaches 1.0. The time series with
H,0.5 is antipersistent, which means that the time series
data are negatively correlated.

Our modification relative to the standard Hurst R/S
analysis[14,15] consists of using only one box whose width
increases fromn=2 ton=N (the whole series), so that in this
way the ordering in the initial series is preserved. In our
procedure the boxes of larger width become more relevant
for determining the Hurst exponent. The pronounce differ-
ences between healthy and SAP subjects are observed in this
case.

The R/S analysis was performed on four separate re-
gimes: resting Pt, running programs P1 and P2, and relax-
ation Re. However, the programs P1 and P2 are only relevant
for our analysis and results. The Pt period was too short

TABLE I. Defined regimes in ergometric measurement: Bruce
protocol [11].

Program Belt angles°d Belt velocity skm/hd

P1 10 2.7

P2 12 4

P3 14 5.5

P4 16 6.9

P5 18 8

FIG. 1. RR intervals of a healthy(top) and a SAP(bottom)
subject in one of our ergometric measurements. The global nonsta-
tionarity as result of physical activity is clearly seen. Pt corresponds
to the rest-condition measurement, P1–P4 to running stages on a
belt with increasing intensity, and Re to a relaxation period after
stopping the moving belt.

FIG. 2. An example of R/S analysis;(a) Typical shape of RR
interval sequence,(b) RR intervals in P1 with a third-order polyno-
mial regression trendline,(c) deviations from the polynomial
trendline, and(d) R/S analysis of data in(c) in comparison with the
random datasH=0.5d.
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(30–50 heartbeats) and the Re period started when the mov-
ing belt was stopped, usually somewhere inside of the P3 or
P4 programs, for medical reasons.

Our patients were divided into two groups: the group with
evidence of ishemic ST-segment depression of more than
1 mV (SAP subjects) and the control group of healthy sub-
jects. The selection of subjects was performed by a cardiolo-
gist according to the generally accepted medical knowledge.

As pointed out earlier, our R/S calculation was based on
the deviation of the original RR intervals from the trendline.
The main steps are shown in Fig. 2 for P1 regime. The pro-
cedure adopted here is to calculate R/S for a box ofn ele-
ments, starting with the first two elements. In each next step
one more element is added, and R/S is calculated for the
wider box. The process is continued until the box of lengthN
(the whole data set) is reached. H is evaluated as a slope of
the least-squares fit line in the logsR/Sd versus logsnd plot,
using the whole span of the data. In this way, we preserve the
ordering of RR intervals during the calculation.

Figure 3 shows the values of H from the R/S analysis for
each individual during ergometric measurements. It involves
14 independent measurements on seven healthy plus seven
SAP subjects.

Depending on the regime type,H generally exceeds 0.5.
In the Pt regime, both healthy and SAP subjects haveH
about 0.7 and we cannot distinguish these two groups. The
situation changes in regimes under physical activity. The dif-
ference between healthy and SAP subjects is clearly seen in
the P1 and P2 programs. TheH for healthy subjects increases
with increasing running intensity, whileH for SAP subjects
decreases in the same(P1 and P2) regimes. Significance of
the separation is estimated by the t-test. We find the value
6.18 (4.65) for P1 (P2) regime, which corresponds to the
confidence level P,0.001.

For better understanding of our results, shown in Fig. 3,
the data points of logsR/Sd as a function of logsnd, for each
subject are plotted in Fig. 4, for P1 and P2 regimes, respec-
tively. A power law fit to the entire data, including the region
where one observes a saturation of R/S, is made(Figs. 3 and
4). Since there will be many points in that region, the fit is
going to be strongly constrained by that saturation regime,
leading to an underestimation of the exponent. Apparently,
linear trends observed in SAP patients tend to be globally
closer to random data behaviorsH=0.5d. We observed that
individual R/S points for largern became more spread for
SAP subjects, in comparison to healthy subjects. Also, the
oscillations around linear trendlines are larger for SAP pa-
tients than for healthy subjects. In general, the slope of R/S
analysis isn dependent and oscillates around the linear trend
for large n. Similar behavior has been observed in the R/S
analysis of DNA sequence[16]. An oscillating behavior re-
flects local nonhomogenities, remaining drifts, and presence
of ES in RR data, which were not canceled in our method of
R/S calculation. Such oscillations aroundH=0.5 are also
observed when RR data points are randomly shuffled. There-
fore, a very good linearity in power law is generally not
observed, and scaling exponentsHd represents the global be-
havior of linear trends with oscillations around it included.
This type of behavior suggests the presence of multiple time-
scale processes related to multifractality of the RR data un-
der study[3].

We have also compared our results to the usual method of
detrended fluctuation analysis(DFA) [2,17]. Our results with
the R/S method are supported by the DFA, which shows
similar behavior of distinguishing healthy from SAP subjects
in the P2 regime. We have used the first-order DFA, on the
data set with a third-order polynomial trend removed. For
consistency, in the detrending procedure we have included

FIG. 3. TheH from R/S analysis for each subject in the group
(scatter plot), in different regimes of ergometric measurement. Dots
denotes healthy subjects and squares SAP subjects.

FIG. 4. Individual R/S points as a function of the box-sizen in
P1 and P2 regimes. Points are connected for clarity by lines for
each individual.
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the maximal box sizes of widthn=N (whole data set) and
n=fN/2g ,fN/3g. These box sizes have also been included in
the R/S analysis, wheren means that there are exactlyn
points in each box. The importance of long boxes for the
determination ofa is less than in the corresponding R/S
method. We have found that the DFA is less efficient than the
R/S method in separating healthy subjects from SAP pa-
tients in P1 and P2 programs(Fig. 5). As estimated byt-test,
the significance of the separation is 2.88(4.67) for the P1

(P2) regime, which corresponds to the level of probability
0.01,P,0.02 (P1) and P,0.001 (P2). That is, separation
in P1 is less pronounced with the DFA method than it is in
comparison to the corresponding R/S result. In the P2 re-
gime, the confidence level of DFA is the same as it was in the
R/S analysis.

Our results with the R/S analysis show a clear separation
between SAP and healthy subjects in the P2 regime of physi-
cal activity. Further studies in larger populations are needed
to confirm this result. If the observed trend would continue in
larger statistics, the R/S analysis could become a useful
method in separating SAP subjects from healthy ones, espe-
cially in borderline cases where a clinical diagnosis cannot
be set from electrocardiogram(ECG) measurements only.

In conclusion, we are reporting on an analysis of heart-
rate data during exercise that appears to provide a window
into the diagnosis of angina pectoris. We have shown that
fluctuations in heartbeat time series in controlled ergometric
regimes exhibit fractal properties when analyzed using the
improved rescaled rangesR/Sd method(Fig. 4), as well as
when using the DFA(Fig. 5). The R/S analysis for ergomet-
ric measurements is described by the Hurst empirical law
R/S,nH, for 2øn,400. Figure 2(d) shows data for the
range 3–260 and, in this case, a good power-law behavior is
observed for only 3–20. Oscillatory behavior of the data
points around the linear trendline is seen in each case, as is
shown in Fig. 4. These oscillations arise from the multiscale
nature of RR data that were not canceled out by our way of
R/S analysis. They are a signature of multifractality in RR
data. The Hurst exponentH during progressive physical ac-
tivity is generallyH.0.5 and increases for healthy subjects,
in contrast to SAP subjects where it is found to decrease.
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